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DEM: the Gold Standard

Model diverse particles
and properties

Measure relevant quantities

Control material properties

“Combinatorial” experiments
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DEM: the Gold Standard (cont.)

Remarkable qualitative agreement

Good mascroscopic quantitative agreement (IS, etc.)
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Discrete Element Method

Goal: gain macroscopic insight from
microscopic considerations

Method: Model interaction forces

Specifics: Newton’s Law (F = ma)
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Contact Mechanics – Normal Force Models

Simple spring-dashpot model schematic (shown)

Force models vary in both accuracy and
computational difficulty.
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Force versus Approach

A simple test of a model’s accuracy

Area “under” the curve represents energy dissipation.
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Coefficient of Restitution

A useful test of model’s dynamic response (typically only

test)

Note that CR accuracy is not necessary for obtaining
correct kinematics!
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Contact Mechanics – Friction Forces

Coulomb limit applies after (macro-)sliding occurs:
T = µN

Sliding onset is more complicated (Mindlin, 1949):

Friction has a “memory”: T = Told + kT s

Watch out for rolling on perfectly smooth surface! (rolling
friction?).
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Friction Force Models

Key issue is incremental friction
(proportional to displacement, not velocity
→ creep!)

Capturing microslip not generally
considered critical.

Walton-Braun

(Two Model):
kt = kto(1 −

ft
′−ft

∗

µfn−ft
∗ )

n
for loading

kt = kto(1 −
ft

∗−ft
′

µfn+ft
∗ )

n
for unloading
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Force versus Approach

Note the asymptote to Coulomb sliding
Zero model not shown since force is not a function of displacement
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Model System

Roughened inner cylinder rotates

Experimentally extract f, v, T profiles
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Model System (cont.)

Roughness varies from 0→1
Ω varies from 220RPM→270RPM
“Base case”: Ω = 240RPM, R = 0.6
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Match Properties
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Plastic Deformation
Visco Dissipation

Match dissipation for both plastic and visco

Some simulations in 2d, others with varying gaps
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Geometry and Models

Model variation Version 1 Version 2+

Normal force model Plastic [P] Spring-Dashpot [p]

Friction force model Mindlin [M] Cundall [m]

Rolling friction Large [R′] Present [R]
Absent [r]

Dissipation Fit to experiment [F] Larger than physical [f]

Geometry Fit to experiment [3d] Larger head space [3D]
Ideal two dimensional [2D]

Particle Geometry Aspherical [A] Perfect spheres [a]
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Solid Fraction by Model

Plastic Dissipation [P] Spring-Dashpot [p]
Two Model Friction [M] One Model [m]
Rolling friction [R′/R] Absent [r]
Dissipation Fit [F] Larger [f]
Geometry Fit [3d/3D] Planar [2D]
Particles Aspherical [A] Spheres [a]

In 2d, max packing 0.91; 3d systems overlap so f above 1
Particle geometry is important; little else matters
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Velocity Profile by Model

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Normalized Tangential Velocity (dimensionless)

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 B

in
 R

ad
iu

s 
(d

im
en

si
on

le
ss

)

PMRF3dA

PMRF3da

PMRF3Da

PMRf3Da

pMRF3Da

PmRF3Da

PMRF2Da

PMR’F3Da

PMrF3Da
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Particles Aspherical [A] Spheres [a]

System geometry match is critical (2D qualitatively wrong)!
Rolling friction and/or dissipation may be tuned (to mimic
asphericity?)
Visco is way off
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Granular Temperature by Model
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“Extra” dissipation may work (but may create more errors)
Rolling friction cannot be tuned properly
Visco is way off
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Varying Roughness/Rotation Rate (f Profile)

Max location is very robust

Roughness simulations captures trends properly (even
cross-over)

Rotation rate is very slightly off
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Varying Roughness/Rotation Rate (Velocity)

Roughness trend is captured

Rotation trend is captured
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Varying Roughness/Rotation Rate (Granular Temp)

Roughness trend is captured

Rotation rate trend is captured
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Parametric Study, ftot (Solid Fraction Profile)
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νS = 0.35
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νS = 0.60

νS = 0.65

Surprising agreement both qualitative and quantitative
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Parametric Study, ftot (Velocity Profile)
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Qualitative trends are captured

Slightly off quantitatively (perhaps)
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Parametric Study, ftot (Granular Temp Profile)
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Qualitative trend is decent

Consistently overpredict T
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Outlook

DEM “gold standard” – good quantitative

Modeling exact physical geometry is critical

Modeling of normal force/dissipation is important for v
profile

Modeling friction is more flexible (likely not viscous)

Rolling friction can compensate for shape for v or T, not
both

Particle shape itself needed to capture both v and T

Looking at f, v, and T is surprisingly discriminatory

Single-particle tests may not tell whole story ...

Acknowledgment: National Energy Technology Lab,
Department of Energy
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